Lecture 40

TM Example, Encoding of a TM

Turing Machines: An Example

Example: Design a TM that decides $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 1\right\}$ over $\{0,1,2\}$.
Solution: Idea: First ensure that input initially contains a few 0 s , followed by a few 1 s , followed by a few 2 s . Then, check that the number of $0 \mathrm{~s}, 1 \mathrm{~s}$, and 2 s are equal.
$Q=\left\{q_{s}, q_{a}, q_{r}, \ldots\right\}$
$\Sigma=\{0,1,2\} \quad \Gamma=\{0,1,2, \sqcup, \ldots\}$
δ : Ensuring that input contains 0 s followed by 1 s followed by 2 s .

$$
\begin{aligned}
& \delta\left(q_{s}, 0\right)=\left(q_{\text {find }}, 0, R\right), \quad \delta\left(q_{s}, 1\right)=\left(q_{r}, 1, R\right), \quad \delta\left(q_{s}, 2\right)=\left(q_{r}, 2, R\right), \quad \delta\left(q_{s}, \sqcup\right)=\left(q_{r}, \sqcup, R\right) \\
& \delta\left(q_{\text {find }_{1}}, 0\right)=\left(q_{\text {find }_{1}}, 0, R\right), \quad \delta\left(q_{\text {find }_{1}}, 1\right)=\left(q_{\text {find }_{2}}, 1, R\right), \quad \delta\left(q_{\text {find }_{1}}, 2\right)=\left(q_{r}, 2, R\right), \quad \delta\left(q_{\text {find }}, ~ \sqcup\right)=\left(q_{r}, \sqcup, R\right) \\
& \delta\left(q_{\text {find }}, 0\right)=\left(q_{r}, 0, R\right), \quad \delta\left(q_{\text {find }_{2}}, 1\right)=\left(q_{\text {find }_{2}}, 1, R\right), \quad\left(q_{\text {find }}, 2\right)=\left(q_{\text {find }_{\cup}}, 2, R\right), \quad\left(q_{\text {find }}, \sqcup\right)=\left(q_{r}, \sqcup, R\right) \\
& \delta\left(q_{\text {find }}^{\checkmark}, 0\right)=\left(q_{r}, 0, R\right), \quad \delta\left(q_{\text {find }_{\sqcup}}, 1\right)=\left(q_{r}, 1, R\right), \quad\left(q_{\text {find }}, 2\right)=\left(q_{\text {find }_{\sqcup}}, 2, R\right), \quad\left(q_{\text {find }_{\sqcup}}, \sqcup\right)=\left(q_{c r_{2}}, \sqcup, L\right) \ldots
\end{aligned}
$$

Turing Machines: An Example

Example: Design a TM that decides $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 1\right\}$
Solution: δ : Overview of checking that input contains equal number of $0 \mathrm{~s}, 1 \mathrm{~s}$, and 2 s .

- Replace the rightmost 2 by Z, rightmost 1 by Y, and rightmost 0 by X, in one iteration, repeatedly.
- Halt with q_{r} if machine can replace one out of $\{0,1,2\}$ but not the others.
- Halt with q_{a} if machine has replaced all of $\{0,1,2\}$.

Encoding a TM

Goal: Encode a TM M as a binary string x such that M can be recovered from x.
Warm Up: Encoding an integer:

$$
3 \rightarrow 11,5 \rightarrow 101,45 \rightarrow 101101 \text { (Encode using binary representation) }
$$

Encoding a pair (or tuple) of integers:

$$
\langle 5,2\rangle=10110 \quad \text { (Concatenate the binary representation of } 5 \text { and } 2)
$$

$\langle 5,2\rangle$ cannot be recovered from 10110 as 10110 is also the encoding of $\langle 2,6\rangle$.
Scheme: Encode $\langle x, y\rangle$ as $\operatorname{rep}(x) 01 r e p(y)$, where $\operatorname{rep}(x)$, rep (y) are the binary strings obtained from replacing every 0 with 00 and every 1 with 11 in the binary representation of x, y, respectively.

$$
\langle 5,2\rangle=110011011100 \text { (01 acts like a separator of two numbers) }
$$

Encoding a TM

Observation: Encoding δ of Turing machine M is sufficient to encode M.
Let $f: Q \rightarrow \mathbb{Z}^{+}, g: \Gamma \rightarrow \mathbb{Z}^{+}, h:\{L, R\} \rightarrow\{1,2\}$ be injective functions from
Q, Γ, and $\{L, R\}$ to integers such that:

- f maps $q_{\text {start }}, q_{\text {accept }}, q_{\text {reject }}$ to $1,2,3$, respectively.
- g maps $0,1, \sqcup$ to $1,2,3$, respectively.

We can encode one entry of δ the following way:

$$
\begin{aligned}
& \delta(q, a)=\left(q^{\prime}, b, M\right) \rightarrow \operatorname{rep}(f(q)) 01 \operatorname{rep}(g(q)) 01 \operatorname{rep}\left(f\left(q^{\prime}\right)\right) 01 \operatorname{rep}(g(b)) 01 \operatorname{rep}(h(M)) \\
& \text { E.g. } \delta\left(q_{\text {start }}, 0\right)=\left(q_{\text {accept }}, 1, R\right) \rightarrow 110111011100011100011100
\end{aligned}
$$

Complete δ can be encoded by concatenating encoding of all entries using 01 as separator.
Note: Binary strings not in required format such as 1010 correspond to some trivial TM.

