Lecture 40

TM Example, Encoding of a TM

Turing Machines: An Example

Example: Design a TM that decides $L = \{0^n 1^n 2^n \mid n \ge 1\}$ over $\{0,1,2\}$. Solution: Idea: First ensure that input initially contains a few 0s, followed by a few 1s, followed by a few 2s. Then, check that the number of 0s, 1s, and 2s are equal. $Q = \{q_{s}, q_{a}, q_{r}, ...\}$ $\Sigma = \{0, 1, 2\}$ $\Gamma = \{0, 1, 2, \sqcup, ...\}$ δ : Ensuring that input contains 0s followed by 1s followed by 2s. $\delta(q_s, 0) = (q_{find_1}, 0, R), \quad \delta(q_s, 1) = (q_r, 1, R), \quad \delta(q_s, 2) = (q_r, 2, R), \quad \delta(q_s, \Box) = (q_r, \Box, R)$ $\delta(q_{find_1}, 0) = (q_{find_1}, 0, R), \quad \delta(q_{find_1}, 1) = (q_{find_2}, 1, R), \quad \delta(q_{find_1}, 2) = (q_r, 2, R), \quad \delta(q_{find_1}, \Box) = (q_r, \Box, R)$ $\delta(q_{find_2}, 0) = (q_r, 0, R), \quad \delta(q_{find_2}, 1) = (q_{find_2}, 1, R), \quad (q_{find_2}, 2) = (q_{find_{\sqcup}}, 2, R), \quad (q_{find_2}, \sqcup) = (q_r, \sqcup, R)$ $\delta(q_{find_{\sqcup}}, 0) = (q_r, 0, R), \quad \delta(q_{find_{\sqcup}}, 1) = (q_r, 1, R), \quad (q_{find_{\sqcup}}, 2) = (q_{find_{\sqcup}}, 2, R), \quad (q_{find_{\sqcup}}, \sqcup) = (q_{cr_2}, \sqcup, L) \quad \dots$

Turing Machines: An Example

Example: Design a TM that decides $L = \{0^n 1^n 2^n \mid n \ge 1\}$

- Replace the rightmost 2 by Z, rightmost 1 by Y, and rightmost 0 by X, in one iteration, repeatedly.
- Halt with q_r if machine can replace one out of $\{0,1,2\}$ but not the others. • Halt with q_a if machine has replaced all of $\{0,1,2\}$.

- **Solution:** δ : Overview of checking that input contains equal number of 0s, 1s, and 2s.

Encoding a TM

Goal: Encode a TM M as a binary string x such that M can be recovered from x.

Warm Up: Encoding an integer:

$$3 \rightarrow 11, 5 \rightarrow 101, 45$$

Encoding a pair (or tuple) of integers:

in the binary representation of x, y, respectively.

- \rightarrow 101101 (Encode using binary representation)
- (5,2) = 10110 (Concatenate the binary representation of 5 and 2) (5,2) cannot be recovered from 10110 as 10110 is also the encoding of (2,6).
- **Scheme:** Encode $\langle x, y \rangle$ as rep(x)01rep(y), where rep(x), rep(y) are the binary strings obtained from replacing every 0 with 00 and every 1 with 11
 - $\langle 5,2 \rangle = 11001101100$ (01 acts like a separator of two numbers)

Encoding a TM

Observation: Encoding δ of Turing machine M is sufficient to encode M.

Let $f: Q \to \mathbb{Z}^+$, $g: \Gamma \to \mathbb{Z}^+$, $h: \{L, R\} \to \{1, 2\}$ be injective functions from Q, Γ , and $\{L, R\}$ to integers such that:

- f maps q_{start} , q_{accept} , q_{reject} to 1,2,3, respectively.
- g maps $0,1, \sqcup$ to 1,2,3, respectively.

We can encode one entry of δ the following way:

E.g.
$$\delta(q_{start}, 0) = (q_{accept}, 1, R) \rightarrow 1$$

- $\delta(q,a) = (q',b,M) \rightarrow rep(f(q))\mathbf{0}1rep(g(q))\mathbf{0}1rep(f(q'))\mathbf{0}1rep(g(b))\mathbf{0}1rep(h(M))$ 10111011100011100011100
- Complete δ can be encoded by concatenating encoding of all entries using 01 as separator. **Note:** Binary strings not in required format such as 1010 correspond to some trivial TM.

